Topo IV is the topoisomerase that knots and unknots sister duplexes during DNA replication

نویسندگان

  • Virginia López
  • María-Luisa Martínez-Robles
  • Pablo Hernández
  • Dora B. Krimer
  • Jorge B. Schvartzman
چکیده

DNA topology plays a crucial role in all living cells. In prokaryotes, negative supercoiling is required to initiate replication and either negative or positive supercoiling assists decatenation. The role of DNA knots, however, remains a mystery. Knots are very harmful for cells if not removed efficiently, but DNA molecules become knotted in vivo. If knots are deleterious, why then does DNA become knotted? Here, we used classical genetics, high-resolution 2D agarose gel electrophoresis and atomic force microscopy to show that topoisomerase IV (Topo IV), one of the two type-II DNA topoisomerases in bacteria, is responsible for the knotting and unknotting of sister duplexes during DNA replication. We propose that when progression of the replication forks is impaired, sister duplexes become loosely intertwined. Under these conditions, Topo IV inadvertently makes the strand passages that lead to the formation of knots and removes them later on to allow their correct segregation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome

Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding an...

متن کامل

Regulation of Sister Chromosome Cohesion by the Replication Fork Tracking Protein SeqA

Analogously to chromosome cohesion in eukaryotes, newly replicated DNA in E. coli is held together by inter-sister linkages before partitioning into daughter nucleoids. In both cases, initial joining is apparently mediated by DNA catenation, in which replication-induced positive supercoils diffuse behind the fork, causing newly replicated duplexes to twist around each other. Type-II topoisomera...

متن کامل

Interplay of DNA supercoiling and catenation during the segregation of sister duplexes

The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimension...

متن کامل

Comparison of DNA decatenation by Escherichia coli topoisomerase IV and topoisomerase III: implications for non-equilibrium topology simplification

Type II topoisomerases are essential enzymes that regulate DNA topology through a strand-passage mechanism. Some type II topoisomerases relax supercoils, unknot and decatenate DNA to below thermodynamic equilibrium. Several models of this non-equilibrium topology simplification phenomenon have been proposed. The kinetic proofreading (KPR) model postulates that strand passage requires a DNA-boun...

متن کامل

Topoisomerase IV bends and overtwists DNA upon binding.

Escherichia coli topoisomerase IV (Topo IV) is an essential ATP-dependent enzyme that unlinks sister chromosomes during replication and efficiently removes positive but not negative supercoils. In this article, we investigate the binding properties of Topo IV onto DNA in the absence of ATP using a single molecule micromanipulation setup. We find that the enzyme binds cooperatively (Hill coeffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012